Sample Mean v. OLS: Estimation I

1. Estimation	Sample Mean	OLS
DGM: Data Generation Mechanism	$\{Y_i\}$ iid $E(Y_i) = \mu$, $Var(Y_i) = \sigma^2$	$\begin{aligned} \{Y_i\} &= \{\beta_0 + \beta_1 x_i + U_i\} & \text{indept.} \\ E(Y_i \mid x_i) &= \beta_0 + \beta_1 x_i, \\ Var(Y_i \mid x_i) &= \sigma^2 \end{aligned}$
Unknown parameter (to be estimated)	μ	₿.
Linear Estimator	$b_0 + \sum b_i Y_i$	$b_0 + \sum b_i Y_i$
Linear Unbiased Estimator	$\sum b_i Y_i \mid \sum b_i = 1$	$\sum b_i Y_i \mid \sum b_i = 0 \& \sum b_i x_i = 1$
Variance to be minimized	$\sigma^2 \sum b_i^2$	$\sigma^2 \sum b_i^2$
Constraints	$\sum b_i = 1$	$\sum b_i = 0 \& \sum b_i x_i = 1$

Sample Mean v. OLS: Estimation II

1. Estimation, continued	Sample Mean	OLS
BLUE	$b_i^* = \frac{1}{n}$	$b_j^* = \frac{(x_j - \overline{x})}{\sum (x_i - \overline{x})^2}$
Estimator	$M = \frac{1}{n} \sum Y_i$ (unweighted avg. of values)	$B_1 \mid x's = \sum \left\{ \frac{(x_i - \overline{x})^2}{(n-1)S_{xx}} \right\} \frac{(Y_i - \overline{Y})}{(x_i - \overline{x})}$ (weighted avg. of slopes)
Estimate	$\hat{\mu} = \frac{1}{n} \sum y_i$	$\hat{\beta}_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{j} - \overline{x})^{2}}$
Estimator Variance	$\frac{\sigma^2}{n}$	$\frac{\sigma^2}{\sum (x_j - \overline{x})^2}$
Standard Deviation	$sd(M) = \frac{\sigma}{\sqrt{n}}$	$sd(B_1) = \frac{\sigma}{\sqrt{\sum (x_j - \overline{x})^2}}$
Standard Error	$se(M) = \frac{S_{\gamma}}{\sqrt{n}}$	$se(B_1) = \frac{RMSE}{\sqrt{\sum (x_j - \bar{x})^2}}$

Sample Mean v. OLS: Inference I

2. Inference	Sample Mean	OLS
Dist. of Y_i	$Y_i \sim N(\mu, \sigma^2)$	$Y_i \mid x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$
Degrees of Freedom	n-1	n-2
Distribution of Estimator	$\frac{M - \mu}{sd(M)} \sim N(0,1) \text{where}$ $sd(M) = \sigma / \sqrt{n}$	$\frac{B_1 - \beta_1}{sd(B_1)} \sim N(0,1) \text{where}$ $sd(B_1) = \sigma / \sqrt{\sum_i (x_i - \overline{x})^2}$
t statistic	$\frac{M - \mu}{se(M)} \sim t_{n-1} \text{ where } se(M)$ $= \frac{S_{\gamma}}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum (Y_i - \overline{Y})^2}{n-1}}$	$\frac{B_1 - \beta_1}{se(B_1)} \sim t_{n-2} \text{ where}$ $se(B_1) = \frac{RMSE}{\sqrt{\sum_i (x_i - \overline{x})^2}}$

Sample Mean v. OLS: Inference II

2. Inference, continued	Sample Mean	OLS
Confidence Intervals	$ [M \pm c \ se(M)], $ $P[t_{n-1} < c) = p $	$\begin{aligned} \left[B_1 \pm c \ se(B_1) \right], \\ P[\mid t_{n-2} \mid < c) &= p \end{aligned}$
Null Hypothesis:	$H_0: \mu = 0$	$H_0: \beta_1 = 0$
t statistic (under Ho)	$\frac{M}{se(M)}$	$\frac{B_1}{se(B_1)}$
t statistic (for the given sample)	$t_{\hat{\mu}} = \frac{\hat{\mu}}{se(\hat{\mu})}$	$t_{\hat{\beta}_{1}} = \frac{\hat{\beta}_{1}}{se(\hat{\beta}_{1})}$
p value	$P[\mid t_{n-1}\mid > t_{\hat{\mu}})$	$P[\mid t_{n-2}\mid > t_{\hat{\beta}_1})$
Hypothesis Test:	Reject if $\left \frac{\hat{\mu} - 0}{se(\hat{\mu})} \right > c$ or $\left t_{\hat{\mu}} \right > c$ or if $p < \alpha$	Reject if $\left \frac{\hat{\beta}_{1} - 0}{se(\hat{\beta}_{1})} \right > c$ or $\left t_{\hat{\beta}_{1}} \right > c$ or if $p < \alpha$

